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Channel coding in Information theory

Many communication tasks can be formalized as a channel coding problem:

Senders , , Receivers
Information Information

O00O0O encoding ;hannel decoding O000O
AONN iy | i | wp NN

Classical, quantum, ... Classical, quantum,
eavesdroppers,
environment, ...

Central notions in information theory:
- Capacity of a channel: quantifies information-processing capabilities of a channel.

- Coding theorem: expresses capacity as (optimization over) entropic quantities.



Channel coding in information theory

Prototypical (and first) example: classical point-to-point channel

Sender Recelver
O encoding Classical channel decoding
O
ﬂ meM, » x" e X" N(y:|x:) yh e Yn » memM, ﬂ
debool Input output
FOaEROOK alphabet alphabet
Capacity: Shannon's noisy channel coding theorem

C(N) := sup{ - log [M,|: Pr(M=M’) - 0}.

C(N) = maxZ(X;Y)

Shannon entropy: H(X) = - ¥ p,(x)logp,(X) Px
XEX

[Shannon '48]
Mutual information: Z(X; Y) = H(X) + H(Y) - H(XY)



Channel coding in Information theory

Point-to-point classical communication is extremely well understood:

Shannon's formula is single-letter,

l.e., a bounded optimization problem.

C(N) = maxZ(X;Y)
p
’ [Shannon '48]

Capacity of a classical channel can be

efficiently computed in time
O(|V|1X]log|X]e™).

[Arimoto '72; Blahut '72]

Shannon's theorem can be phrased as a
geometric program, a type of convex
program.

[Chiang, Boyd '04]

There are families of capacity-achieving
codes with efficient encoding/decoding:
LDPC codes, turbo codes, polar codes.

[Gallager '60; Berrou '91; Arikan '09]



Channel coding in Information theory

Problematic settings Complications

- Network information theory - [ncreased complexity of algorithms

nythin nd 1 sender — 1 receiver
(anything beyond 1sende eceiver) = Non-convex optimization problems

= Quantum resources: quantum channels, o
quantum information, ... = Unbounded optimization problems

(multi-letter formulas)

This talk: Quantum information transmission through quantum channel

- Relevant capacity: Quantum capacity of a quantum channel
-» Non-convexity and multipartite entanglement main problems/objects of study.

- Use mathematical/numerical tools, in particular symmetries and optimization techniques,
to study quantum capacity.
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Quantum capacity of a quantum channel

Quantum channel models:

Information theory Error correction

Noisy communication link Environmental noise in a

between quantum parties. quantum device.

‘ Quantum capacity characterizes: ‘

How much quantum information How much quantum information

can be sent faithfully? can be protected against noise?




Quantum capacity of a quantum channel

Entanglement generation:

— Share kR identical copies of pure O

bipartite state y,, via channel V. m

— Distill EPR pairs [0),]0); + [1),]1), Alice
from N (y,,)®* using local operations and
forward classical communication

with vanishing error.  [Devetak '05; Devetak, Winter '05]

Achievable rate: coherent information

Iy, N) = SN (@) = SV (@i,))

Von Neumann entropy: S(p) = -tr(p logp)



Quantum capacity of a quantum channel

Idea:

— Distribute a multipartite state g ,,, via

n identical and independent copies of .

— Rate for distilling from [N*"(y,,,)]®*:

There are @, and A such that

LT (@, N°") > maxZ (¢, \).

[Shor, Smolin '96; DiVincenzo et al. '98]




Quantum capacity of a quantum channel

Quantum capacity Q(N\): largest rate Quantum capacity coding theorem

at which EPR pairs can be generated

Q) = sup ~max Z (y_, N°")

with asymptotically vanishing error. neNy N ¥,

Unbounded optimization problem Non-concave maximization problem

(because of superadditivity) and for channels with superadditive
known pathological behavior. coherent information.

[Schumacher '96; Schumacher, Nielsen '96; Lloyd '97; Shor '02; Devetak '05; Watanabe '12; Cubitt '15]



Quantum capacity of a quantum channel

Quantum capacity

Q) = sup ~max Z (., N°")

neN N ¥,

Possible computational ansatz

— Multipartite entanglement in code state y,,, causes superadditivity.

— Characterizing multipartite entanglement is hard for growing n

due to exponential scaling of Hilbert space dimension.

— For fixed n, objective function is non-concave and hard to optimize.

Restrict quantum states to polynomial
subspace of Hilbert space with sufficiently
rich entanglement structure, such as

guantum neural network states.

[Bausch, FL '18]

Possible mathematical ansatz

For specific quantum channels, consider
symmetric codes and exploit symmetries
to compute coherent information.

= Permutation invariance [Kern, Renes '08]

- Graph symmetries [Bausch, FL '19]
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Pauli channels and stabilizer states

Pauli channels Important examples:
N (p) = pop + piXpX + p,YpY + p.ZpZ depolarizing noise p,., = (1-p, %, g, %)
— P = (py, P, P,» P5) Probability distribution. BB84 channel pgg., = (1-p)% p - p?,p?,p - p?)

— X, Y,Z Pauli matrices.

— QEC: Ability to correct X, Y, Z errors is sufficient for correcting arbitrary unitary errors. [Shor '95; Steane '96]

— For Pauli channels of the form p, = (1 - x, xp,, Xp,, Xxp,) we are interested in the threshold:

Supremum over all x such that QW ) > 0.

QIT: QNV)>0 & QEC:Q(N)>0 &

faithful quantum communication possible. perfect error-correcting code exists.




Pauli channels and stabilizer states

— Pauli channel: J\/p(p) = poP + pXpX + p,YpY + p.ZpZ.

— Tensor powers: Ng”(pn) = Z Pin Enp,En,
n
with n-qubit Pauli operators £, € P, ={I,X,Y,Z}°" u {1, £i}.
— Restrict to stabilizer states |y,) which are stabilized by

kR pairwise commuting stabilizer generators s; € P, :

sl =ly,) fori=1,..,R  [Gottesman '97]
Graph states

Let I = (V,E) be agraphand N, ={j € V: (i,)) € E}.

For each vertex i define stabilizers s, = X' [T Z.
]ENI

The graph state |I') is the unique pure state stabilized by s, ..., S,




Graph states

Every stabilizer state is local unitary (LU) equivalent to a graph state: [van den Nest et al. '04]

For all stab’s |y, ) there exist I = (V, E) and unitaries U., ..., U, st. U, ® ...® U, |p,) = |I).

Important quantum codes as graph states: @ sistemaqubitss; () reference qubit R

Repetition code (GHZ state) Cat code (Shor code)

[0), ® [0);" + [1), ® [1)7" Concatenation of Z-type and

Star graph X-type rep code.

X-type rep: [+)°" + [-)*",
‘ where [£) ~ |0)  |1).
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Decoherence of graph states

Quantum capacity: Q(\\) = sup — maxI (w,, N°") » Q(N) 2% (w,,N®") forally, and n e N.

neN N Y
2
N(Pp,)) . 72 —» N

Coherent information: Z (¢, \V) = S(V(9,)) -

Compute the tensor action of a Pauli channel

Np(P) = PP + P XpX + p,YpY + p,ZpZ
on a graph state |I).

Observation

72
Graph states translate (products of) o g
71

Pauli errors into Z-type errors.



Decoherence of graph states

Decoherence of graph states:

Z'|TXr|Z' = Z'|T\r|Z X TKCIX = ZNi|ryr)zN Y |TXT| Y = Z'®Ni | T\ | 2N

Graph states subjected to Pauli noise Computing coherent information

For a Pauli channel, output state is of the form

Determine coefficients Ay

for all subset vertices U c V

NE(ITXT]) = > AyluXUl,

ucVv

using the decoherence rules above.
where the |U) = ZY|T') form the graph state basis.

[Hein et al. '05]
17



Decoherence of graph states

Example: star graph on 4 vertices, U = {1, 2}. NO(|TUT) = Z;\U|u)(u|
. . ucV
Pauli error operators generating U: )
772 Y? 72X’ A
\J \J \/ \J

Aoy = P%P% * pgpz * p%p1p3 t* PoP1P,P3

PROBLEM

Exponential scaling:

IV[=n,UcV

Nyt p ¥ pyp +pXpX +p,YpY + pyZpZ

18
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Exploiting graph symmetries

Revisit example: star graph on 4 vertices, U = {1, 2}. RUE Z;\U|u)(u|
ucV

Graph automorphism

2 =3
\ . 4 \ . 4
7'z Y’ 7°X’ AR & VAVAREERS 7°X’ A G

o o

PoP3 + PaPy + PoP1P5 + PoP1PoP; = Aoy @ Ay oy = PoP3 + PaPy+ PoP1P3 + PoP1PoPs

20



Exploiting graph symmetries

Let G = Aut(T, |A|) be the 2-colored graph automorphism group of the graph T.

Identify Pauli operators with ldentify subsets U c V
quaternary strings Q = {0, 1, 2, 3}". with binary strings B = {0, 1}".

Example: Z'X°Y* «— 3012 Example: U ={2,3} «— 0110

) ) ‘ 2 ,
HC’O-»(ED -»c(%‘ "‘”"O:"\'
G) v G G)

Group action of G on Q and B by permuting strings is homomorphic:

Decoherence rules induce G-equivariant surjective map 6: Q —» B. 6(3012) = 0110, i = (23)

B(rm(3012)) = 6(3102) = 0110 = M(01106)
21



Exploiting graph symmetries

Q ={0,1,2,3}",B={0,1}", automorphism group G acts on Q, B by permuting strings.

G-equivariant surjective map 6: Q —» B defined by decoherence rules.

Homomorphic group actions

— For each orbit w € Q/G there exists a unique T € B/G such that w n 87'(1) = {}.

— For an orbit T € B/G and subsets U, U’ € Twe have |87'(U)]| = |67'(U")].

Symmetry-aware algorithm
To compute N®(|TXl]) = ZAU|U)(U| 4 i g

Ucv Loop over orbit representatives of Q/G

» and collect contributions and multiplicities to get A ,.

and partial trace Try, N®"(|TXT]) Yields analytical expression for Z (I, V*") in the p.’s.
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Numerical method

Given: Pauli channel/\/px, where p, = (1-Xx,xp,,Xp,,Xp,), and a graph state ') on n +1 qubits.

Goal: compute coherent information Z (I, N®") from the output state

NN = > AylUXUL.

ucV

Our algorithm yields an analytical expression of the coherent information

in terms of Pauli probabilities (1 - x, xp,, xp,, xp,), 1.e., a function f(x).

We can determine this threshold for a fixed graph state in the whole Pauli channel simplex

by varying (p., p,, p;), leading to a threshold surface.




Repetition code thresholds

0.1
0.05 Plot of the threshold surface of
- ~ 0.5
rep codes with n < 60.
0.025
X pX = (1 _XrXp1rXp27Xp3)
0—
Color: Superadditivity magnitude
~0.25 1
. ~Z (T, j\/’;xn) - qujixIC(Lp,J\/'pX)
~0.05
0 : PP
2P: (1 - P, Y O, 5)
~0.075 BB84: ((1-p)*,p - p*,p*, p - p*)
. P P P
_0.1 dep' (1 - P, 3130 g)
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Concatenated code thresholds

0.1
5-in-5 code
/ : N .
0.075 N (graph state on the right)
0.0 / _ 05 Achieves best threshold
0005 ‘ T for depolarizing channel

5
L for n <25 channel copies. W
0 ‘ Vo
: é [DiVincenzo et al. '98] é}%:%{é
o
_0.25 ‘ [Smith, Smolin '07; Fern, Whaley '08] ?’,“%
. N\
—-0.05 X pX = (1 B XrXp1rXp27Xp3)
0.075 \\ Color: Superadditivity magnitude
1 ony _
N \\// 7 (T, pr ) mfoC(Lp,/\/pX)

0.5 0.5
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A new code family: tree graph states

0.1

0.075

0.05

0.025

—-0.25

—0.05

—-0.075

—0.1

\
: N

N

= 0.5

We found a new interesting code family
based on tree graphs with two levels.

Error thresholds are competitive
compared to 5-in-5 code (see left).

//|\\
T17 ///| AN ANENAN

S5/ XN N So N

T
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Symmetries in channel coding problems

0.1
0.075
0.05

We can use the graph state formalism and exploit

0.025

graph symmetries and tools from group theory

to approximate quantum capacity of interesting channels.

-0.05

-0.075

Ideas for future work:

-0.1

- Generalize methods to handle more general quantum channels?

/ Z \
/ \
- A .
i

//n\\

\

!
dha

- Improve upon/adopt more tools from computational group theory (CGT)?

- Can we use the framework of group actions and CGT to analyze concrete

quantum error correction codes and their decoders, thresholds, etc?

~ 0.5
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