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Quantum channels and their capacities

| 4

Communication (physical evolution) between quantum parties

(systems) is modeled with quantum channels.

A quantum channel \': A — Biis a linear, completely positive,

trace-preserving map acting on a quantum system A.
Many different capacities depending on the context.

Quantum capacity Q(N\): maximal rate at which entanglement

can be generated between A and B through .

Private capacity P(/)\): maximal rate at which secure key can
be established between A and B through \.
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Coding theorem for O
» Hashing bound:
Coherent information Q(l)(/\/) is achievable,
QW) = QW) = max[S(N(p)) - S((id @A) (¢?))],

where $(o) = — Trolog o is the von Neumann entropy, and

|¢*) is a purification of p. [Lloyd 1997; Shor 2002; Devetak 2005]

» Quantum capacity theorem:

Q) = lim ZQW(\en)

n—oo N

» In general, QW(N®") > nQ(I(N), and the regularization over

n is necessary = renders Q(\) intractable to compute!
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Complementary channels

» For any quantum channel N': A — B, there is an isometry

V: A— B® Esuchthat N = Tre(V- VT). [Stinespring 1955]

» Anyisometry V: A — B ® E gives rise to a complementary

channel N¢: A — E to the environment,

N¢(p) := Trg(VpVh).

» N°¢models the loss or leakage of information to the

environment.

» This leakage is “responsible” for super-additivity of oM, and

makes regularization of Q necessary.
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Coding theorems for P

>

Let V: A — B ® E be an isometry for N': A — B, and for an

ensemble of states {py, p,} define the classical-quantum state

Pxae = Doy Px[X) (xlx © Vo, V.
Define the private information
PO(N) = max [I(X;B) — I(X;E)],
{pxspx}
where I(X; B) = S(X) + S(B) — S(XB) is the mutual information.

Private capacity theorem: [Cai et al. 2004; Devetak 2005]
PN) = lim 7> J(N©M)
In general, PN (AN2") > nPO(N).
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Coding theorems for O and P

» Allinequalities are strict in general:
QW) < QW) = lim 2QM(A=n)
IN IN
POWN) < PV) = lim 1pO(\En)

» Trivial situation: identity channel id: A — A.
Q(id) = QW(id) = PW(id) = P(id) (= log|A]) (%)
» We call a channel A/ low-noise, if [N — id ||, < e.

Il - |lo ... diamond norm distance on set of quantum channels.

» Is (%) approximately true for low-noise channels? Yes!
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Main result

Quantum and private capacities of low-noise channels

For low-noise channels \ with || id =\, < ¢,

QN) = QW(N) + 0(e3/% log €)
PN) = QW(N) + 0(3/2 log €).

For Pauli channels, the error term can be improved to O(&2 log ¢).

» Main proof tool: (Approximate) degradability.
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Degradable channels

» A channelis called degradable, if there is another channel
D: B — Esuchthat V¢ =Do N. [Devetak and Shor 2005]
» For a degradable channel, the receiver B can locally simulate
N¢, i.e., the loss to the environment.

» Degradable channels: [Devetak and Shor 2005; Smith 2008]

Q(N) = QW) = PO(N) = P(N).

degradable:
dD: B — Es.t.
N¢=DoN
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Approximate degradability

» Idea: What if degradability is only approximately satisfied?
Do we have Q(N) ~ QW(N)?
» Goal: Find map D that brings A/ as close as possible to N/°.

» Measured by degradability parameter [Sutter et al. 2015]

dg(N) = min [N€ =D oN.

=
» For A with dg(N) =¢,

Q) = QW) < fi(e)
[PW) = POW)| < fale),
where fi(¢) € O(eloge) and fi(e) =%0. [Sutter et al. 2015]

» dg(/N) can be computed using semidefinite programming.
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Approximately degrading a low-noise channel

» Complementary channel id® of identity channel: completely
depolarizing map id* = Tr(+)|0)(0|, and

id® =id“oid.

» We prove: For a low-noise channel N with |V —id ||, < e,
[INC—=NCoN|, < 2632, (%)

» Intuition: N¢ is very noisy and almost useless, so you might as

well use it as the degrading map!

» (x) implies dg(\') < 2¢%/2 and our main result.
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Pauli channels

» Consider a Pauli channel
Ni(p) =dqop+ a1 XpX+aYpY+0a3ZpZ

where X, Y, Z are the usual Pauli matrices and g is a probability

distribution.
» N is a low-noise channel, since [|N; —id [|o = 2(g1 + g2 + g3).

» Hence, with our results from before,
Q(Ng) = Q(l)(Ng) + 0(63/2 loge)
for e = 2(g1 + g2 + g3), and same for P(Nj).
» We can improve this to O(g? log €)!
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Pauli channels

» Assume for simplicity that g; = gi(p) for some underlying single
noise parameter p € [0, 1].

» Example: Depolarizing channel D,
Dy:pr—s (1—p)o+ g(pr+ YpY + Zp2)

» Example: XZ-channel C, (a.k.a. BB84-channel)
Cp: p— (L= p)*p + (p — P*) XpX + p?> YpY + (p — p*) ZpZ

» In both cases, numerics suggest that

dg(D,) = 0(p?) and dg(Cp) = O(p?).

» Strategy: Prove this by guessing good degrading map!
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Pauli channels

» Ansatz: Again the complementary channel, but make it slightly

noisier, D¢ with s = p + ap?.

» We prove: Fora =

dg(Dp) < D5 -

8
3'

¢ opt © Dallo < 3(6 + V2)p? + 0(p?)
» Similarly, fora = 4,

dg(Cp) < |ICS — , 0 Cpllo < 16p? + 32p°/2 4 O(p?)

p+ap

» These are remarkably accurate approximations to the true

degradability parameters dg(D,) and dg(Cp)!
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Dp(p) = (1 —p)p + 5(XpX + YpY + Zp2)

006 T _dg(Dp)
— | D5 — D5 0 Dyllo
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Co(p) = (1 = p)’p + (p — P*) XpX + p* YpY + (p — p?) ZpZ

0.25 ¢

—dg(Cp)

— HCS —CsoCpllo
0.2 | where s = p + 4p®
— 16p% + 32p°/?
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Summary of results

» Quantum and private capacity: regularization of the coherent
and private information, notoriously hard to compute, except

for (approximately) degradable channels.

» Low-noise channels are approximately degraded by their

complementary channel.

» Consequence: both capacities of low-noise channels are

essentially equal to the single-letter coherent information.

» Approximation is even better for the class of Pauli channels

(includes depolarizing channel and BB84 channel).
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Discussion and open problems

» The regularization for Q(/\) is necessary because we know of
instances where Q) (N®") > nQM(N).
» This is called superadditivity of the coherent information, and is

achieved by degenerate quantum codes.

[DiVincenzo et al. 1998; Smith and Smolin 2007]

» For the private information 73(1)(/\/), super-additivity is
achieved by shielding private data from corruption.

[Horodecki et al. 2005; Leung et al. 2014]

» Our results show that for low-noise channels degeneracy and

shielding have no considerable effect.

» Capacities are still poorly understood in the high-noise regime!
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