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Quantum channels and their capaciƟes

▶ CommunicaƟon (physical evoluƟon) between quantum parƟes

(systems) is modeled with quantum channels.

▶ A quantum channelN : A → B is a linear, completely posiƟve,

trace-preserving map acƟng on a quantum system A.

▶ Many different capaciƟes depending on the context.

▶ Quantum capacityQ(N ): maximal rate at which entanglement

can be generated between A and B throughN .

▶ Private capacity P(N ): maximal rate at which secure key can

be established between A and B throughN .
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Coding theorem forQ

▶ Hashing bound:

Coherent informaƟonQ(1)(N ) is achievable,

Q(N ) ≥ Q(1)(N ) := max
ρ

[S(N (ρ))− S((id⊗N )(ψρ))],

where S(σ) = −Tr σ log σ is the von Neumann entropy, and

|ψρ⟩ is a purificaƟon of ρ. [Lloyd 1997; Shor 2002; Devetak 2005]

▶ Quantum capacity theorem:

Q(N ) = lim
n→∞

1
n
Q(1)(N⊗n)

▶ In general,Q(1)(N⊗n) > nQ(1)(N ), and the regularizaƟon over

n is necessary=⇒ rendersQ(N ) intractable to compute!
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Complementary channels

▶ For any quantum channelN : A → B, there is an isometry

V : A → B⊗ E such thatN = TrE(V · V†). [SƟnespring 1955]

▶ Any isometry V : A → B⊗ E gives rise to a complementary

channelN c : A → E to the environment,

N c(ρ) := TrB(VρV†).

▶ N c models the loss or leakage of informaƟon to the

environment.

▶ This leakage is “responsible” for super-addiƟvity ofQ(1), and

makes regularizaƟon ofQ necessary.
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Coding theorems for P

▶ Let V : A → B⊗ E be an isometry forN : A → B, and for an

ensemble of states {px, ρx} define the classical-quantum state

ρXBE =
∑

x px|x⟩⟨x|X ⊗ VρxV
†.

▶ Define the private informaƟon

P(1)(N ) := max
{px,ρx}

[I(X; B)− I(X; E)],

where I(X; B) = S(X) + S(B)− S(XB) is the mutual informaƟon.

▶ Private capacity theorem: [Cai et al. 2004; Devetak 2005]

P(N ) = lim
n→∞

1
n
P(1)(N⊗n)

▶ In general, P(1)(N⊗n) > nP(1)(N ).
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Coding theorems forQ and P

▶ All inequaliƟes are strict in general:

Q(1)(N ) ≤ Q(N ) = lim
n→∞

1
nQ

(1)(N⊗n)

P(1)(N ) ≤ P(N ) = lim
n→∞

1
nP

(1)(N⊗n)

≤ ≤

▶ Trivial situaƟon: idenƟty channel id : A → A.

Q(id) = Q(1)(id) = P(1)(id) = P(id) (= log |A|) (∗)

▶ We call a channelN low-noise, if ∥N − id ∥⋄ ≤ ε.

∥ · ∥⋄ ... diamond norm distance on set of quantum channels.

▶ Is (∗) approximately true for low-noise channels? Yes!
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Main result

Quantum and private capaciƟes of low-noise channels

For low-noise channelsN with ∥ id−N∥⋄ ≤ ε,

Q(N ) = Q(1)(N ) + O(ε3/2 log ε)

P(N ) = Q(1)(N ) + O(ε3/2 log ε).

For Pauli channels, the error term can be improved to O(ε2 log ε).

▶ Main proof tool: (Approximate) degradability.

10 / 24



Table of Contents

1 Quantum channels and their capaciƟes

2 Main result: capaciƟes of low-noise channels

3 (Approximate) degradability

4 Pauli channels

5 Conclusion

11 / 24



Degradable channels

▶ A channel is called degradable, if there is another channel

D : B → E such thatN c = D ◦ N . [Devetak and Shor 2005]

▶ For a degradable channel, the receiver B can locally simulate

N c, i.e., the loss to the environment.

▶ Degradable channels: [Devetak and Shor 2005; Smith 2008]

Q(N ) = Q(1)(N ) = P(1)(N ) = P(N ).

A

B

E

N

N c

VN D
degradable:

∃D : B → E s.t.

N c = D ◦ N
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Approximate degradability

▶ Idea: What if degradability is only approximately saƟsfied?

Do we haveQ(N ) ≈ Q(1)(N )?

▶ Goal: Find mapD that bringsN as close as possible toN c.

▶ Measured by degradability parameter [SuƩer et al. 2015]

dg(N ) := min
D : B→E

∥N c −D ◦ N∥⋄.

▶ ForN with dg(N ) = ε,

|Q(N )−Q(1)(N )| ≤ f1(ε)

|P(N )− P(1)(N )| ≤ f2(ε),

where fi(ε) ∈ O(ε log ε) and fi(ε)
ε→0−−→ 0. [SuƩer et al. 2015]

▶ dg(N ) can be computed using semidefinite programming.
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Approximately degrading a low-noise channel

▶ Complementary channel idc of idenƟty channel: completely

depolarizing map idc = Tr(·)|0⟩⟨0|, and

idc = idc ◦ id .

▶ We prove: For a low-noise channelN with ∥N − id ∥⋄ ≤ ε,

∥N c −N c ◦ N∥⋄ ≤ 2ε3/2. (∗)

▶ IntuiƟon: N c is very noisy and almost useless, so you might as

well use it as the degrading map!

▶ (∗) implies dg(N ) ≤ 2ε3/2 and our main result.
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Pauli channels

▶ Consider a Pauli channel

Nq⃗(ρ) = q0 ρ+ q1 X ρ X+ q2 Y ρ Y+ q3 Z ρ Z,

where X, Y, Z are the usual Pauli matrices and q⃗ is a probability

distribuƟon.

▶ Nq⃗ is a low-noise channel, since ∥Nq⃗ − id ∥⋄ = 2(q1 + q2 + q3).

▶ Hence, with our results from before,

Q(Nq⃗) = Q(1)(Nq⃗) + O(ε3/2 log ε)

for ε = 2(q1 + q2 + q3), and same for P(Nq⃗).

▶ We can improve this to O(ε2 log ε)!
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Pauli channels

▶ Assume for simplicity that qi = qi(p) for some underlying single

noise parameter p ∈ [0, 1].

▶ Example: Depolarizing channelDp

Dp : ρ 7−→ (1− p)ρ+
p
3
(XρX+ YρY+ ZρZ)

▶ Example: XZ-channel Cp (a.k.a. BB84-channel)

Cp : ρ 7−→ (1− p)2ρ+ (p− p2) XρX+ p2 YρY+ (p− p2) ZρZ

▶ In both cases, numerics suggest that

dg(Dp) = O(p2) and dg(Cp) = O(p2).

▶ Strategy: Prove this by guessing good degrading map!
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Pauli channels

▶ Ansatz: Again the complementary channel, but make it slightly

noisier,Dc
s with s = p+ ap2.

▶ We prove: For a = 8
3 ,

dg(Dp) ≤ ∥Dc
p −Dc

p+ap2 ◦ Dp∥⋄ ≤ 8
9(6+

√
2)p2 + O(p3)

▶ Similarly, for a = 4,

dg(Cp) ≤ ∥Cc
p − Cc

p+ap2 ◦ Cp∥⋄ ≤ 16p2 + 32p5/2 + O(p3)

▶ These are remarkably accurate approximaƟons to the true

degradability parameters dg(Dp) and dg(Cp)!
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Dp(ρ) = (1− p)ρ+ p
3(XρX+ YρY+ ZρZ)
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Cp(ρ) = (1− p)2ρ+ (p− p2) XρX+ p2 YρY+ (p− p2) ZρZ
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Summary of results

▶ Quantum and private capacity: regularizaƟon of the coherent

and private informaƟon, notoriously hard to compute, except

for (approximately) degradable channels.

▶ Low-noise channels are approximately degraded by their

complementary channel.

▶ Consequence: both capaciƟes of low-noise channels are

essenƟally equal to the single-leƩer coherent informaƟon.

▶ ApproximaƟon is even beƩer for the class of Pauli channels

(includes depolarizing channel and BB84 channel).
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Discussion and open problems

▶ The regularizaƟon forQ(N ) is necessary because we know of

instances whereQ(1)(N⊗n) > nQ(1)(N ).

▶ This is called superaddiƟvity of the coherent informaƟon, and is

achieved by degenerate quantum codes.

[DiVincenzo et al. 1998; Smith and Smolin 2007]

▶ For the private informaƟon P(1)(N ), super-addiƟvity is

achieved by shielding private data from corrupƟon.

[Horodecki et al. 2005; Leung et al. 2014]

▶ Our results show that for low-noise channels degeneracy and

shielding have no considerable effect.

▶ CapaciƟes are sƟll poorly understood in the high-noise regime!
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